Novel chemical enhancers of heat shock increase thermal radiosensitization through a mitotic catastrophe pathway.
نویسندگان
چکیده
Radiation therapy combined with adjuvant hyperthermia has the potential to provide outstanding local-regional control for refractory disease. However, achieving therapeutic thermal dose can be problematic. In the current investigation, we used a chemistry-driven approach with the goal of designing and synthesizing novel small molecules that could function as thermal radiosensitizers. (Z)-(+/-)-2-(1-Benzenesulfonylindol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol was identified as a compound that could lower the threshold for Hsf1 activation and thermal sensitivity. Enhanced thermal sensitivity was associated with significant thermal radiosensitization. We established the structural requirements for activity: the presence of an N-benzenesulfonylindole or N-benzylindole moiety linked at the indolic 3-position to a 2-(1-azabicyclo[2.2.2]octan-3-ol) or 2-(1-azabicyclo[2.2.2]octan-3-one) moiety. These small molecules functioned by exploiting the underlying biophysical events responsible for thermal sensitization. Thermal radiosensitization was characterized biochemically and found to include loss of mitochondrial membrane potential, followed by mitotic catastrophe. These studies identified a novel series of small molecules that represent a promising tool for the treatment of recurrent tumors by ionizing radiation.
منابع مشابه
Increased radiosensitivity and radiothermosensitivity of human pancreatic MIA PaCa-2 and U251 glioblastoma cell lines treated with the novel Hsp90 inhibitor NVP-HSP990
BACKGROUND AND PURPOSE Heat shock Protein 90 (Hsp90) is a molecular chaperone that folds, stabilizes, and functionally regulates many cellular proteins involved in oncogenic signaling and in the regulation of radiosensitivity. It is upregulated in response to stress such a heat. Hyperthermia is a potent radiosensitizer, but induction of Hsp90 may potentially limit its efficacy. Our aim was to i...
متن کاملProteomic profiling revealed the functional networks associated with mitotic catastrophe of HepG2 hepatoma cells induced by 6-bromine-5-hydroxy-4-methoxybenzaldehyde.
Mitotic catastrophe, a form of cell death resulting from abnormal mitosis, is a cytotoxic death pathway as well as an appealing mechanistic strategy for the development of anti-cancer drugs. In this study, 6-bromine-5-hydroxy-4-methoxybenzaldehyde was demonstrated to induce DNA double-strand break, multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indic...
متن کاملRadiosensitization of glioma cells by modulation of Met signalling with the hepatocyte growth factor neutralizing antibody, AMG102
The hepatocyte growth factor (HGF)/Met signalling pathway is up-regulated in many cancers, with downstream mediators playing a role in DNA double strand break repair. Previous studies have shown increased radiosensitization of tumours through modulation of Met signalling by genetic methods. We investigated the effects of the anti-HGF monoclonal antibody, AMG102, on the response to ionizing radi...
متن کاملRadiosensitization by the novel DNA intercalating agent vosaroxin
PURPOSE Vosaroxin is a first in class naphthyridine analog structurally related to quinolone antibacterials, that intercalates DNA and inhibits topoisomerase II. Vosaroxin is not a P-glycoprotein receptor substrate and its activity is independent of p53, thus evading common drug resistance mechanisms. To evaluate vosaroxin as a clinically applicable radiation sensitizer, we investigated its eff...
متن کاملHDJ-2 as a target for radiosensitization of glioblastoma multiforme cells by the farnesyltransferase inhibitor R115777 and the role of the p53/p21 pathway.
Resistance of glioblastoma multiforme to radiotherapy poses a major clinical challenge. Farnesyltransferase inhibitors (FTI), such as R115777, have potential to increase radiotherapeutic benefit in this disease, although their mechanism of action is unclear. In our study with eight glioblastoma multiforme cell lines, the most sensitive ones underwent cell cycle arrest in response to FTI treatme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 67 2 شماره
صفحات -
تاریخ انتشار 2007